首页> 外文会议>International Conference on Power System Technology >Data-driven Power System Collapse Predicting Using Critical Slowing Down Indicators
【24h】

Data-driven Power System Collapse Predicting Using Critical Slowing Down Indicators

机译:使用关键减速指标预测数据驱动的电力系统崩溃

获取原文

摘要

In this paper, a data-driven voltage collapse predicting method is proposed based on the critical slowing down phenomenon of dynamic systems. First, the dynamic model of power systems with fluctuations is established using the stochastic differential algebraic equations. The system model is used to simulate operating data of power systems, and the proposed voltage collapse predicting method does not rely on a detailed model. Second, the critical slowing down phenomenon of dynamic systems is introduced, and the statistical indicators such as the variance and autocorrelation of state variables are designed. Third, a machine learning method is proposed to predict voltage collapse based on the statistical indicators. Finally, the proposed method is tested using the IEEE 14-bus system with renewable energy generation. The noise of PMU measurement is taken into account and Monte Carlo simulation (MCS) is used to simulate PMU data. The predicting method is used to show the warning signals of voltage collapse in such system.
机译:基于动态系统的临界减速现象,提出了一种数据驱动的电压崩溃预测方法。首先,利用随机微分代数方程建立具有波动性的电力系统动力学模型。该系统模型用于仿真电力系统的运行数据,所提出的电压崩溃预测方法不依赖于详细的模型。其次,介绍了动态系统的临界减速现象,并设计了状态变量的方差和自相关等统计指标。第三,提出了一种基于统计指标预测电压崩溃的机器学习方法。最后,使用IEEE 14总线系统和可再生能源发电对提出的方法进行了测试。考虑到PMU测量的噪声,并使用Monte Carlo模拟(MCS)来模拟PMU数据。预测方法用于显示该系统中电压崩溃的警告信号。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号