首页> 外文会议>International Conference on Medical Image Computing and Computer-Assisted Intervention >An Attention-Guided Deep Regression Model for Landmark Detection in Cephalograms
【24h】

An Attention-Guided Deep Regression Model for Landmark Detection in Cephalograms

机译:头颅图中具有里程碑意义的注意力指导深度回归模型

获取原文

摘要

Cephalometric tracing method is usually used in orthodontic diagnosis and treatment planning. In this paper, we propose a deep learning based framework to automatically detect anatomical landmarks in cephalometric X-ray images. We train the deep encoder-decoder model for landmark detection, which combines global landmark configuration with local high-resolution feature responses. The proposed framework is based on a 2-stage u-net, regressing the multi-channel heatmaps for landmark detection. In this framework, we embed attention mechanism with global stage heatmaps, guiding the local stage inferring, to regress the local heatmap patches in a high resolution. Besides, an Expansive Exploration strategy is applied to improve robustness while inferring, expanding the searching scope without increasing model complexity. We have evaluated the proposed framework in the most widely-used public dataset of landmark detection in cephalometric X-ray images. With less computation and manually tuning, the proposed framework achieves state-of-the-art results.
机译:头颅追踪法通常用于正畸诊断和治疗计划中。在本文中,我们提出了一个基于深度学习的框架来自动检测头颅X射线图像中的解剖标志。我们训练了用于地标检测的深度编码器-解码器模型,该模型将全局地标配置与本地高分辨率特征响应相结合。所提出的框架基于2级u-net,对多通道热图进行回归以进行地标检测。在此框架中,我们将注意机制与全局阶段热图嵌入在一起,指导局部阶段推断,以高分辨率回归局部热图补丁。此外,采用了扩展探索策略来提高鲁棒性,同时推断,扩展搜索范围而不增加模型复杂性。我们在头颅X射线图像中界标检测的最广泛使用的公共数据集中评估了拟议的框架。借助较少的计算和手动调整,所提出的框架可实现最新的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号