首页> 外文会议>International Conference on Machine Learning for Cyber Security >Protecting the Visual Fidelity of Machine Learning Datasets Using QR Codes
【24h】

Protecting the Visual Fidelity of Machine Learning Datasets Using QR Codes

机译:使用QR码保护机器学习数据集的视觉保真度

获取原文

摘要

Machine learning is becoming increasingly popular in a variety of modern technology. However, research has demonstrated that, machine learning models are vulnerable to adversarial examples in their inputs. Potential attacks include poisoning datasets by perturbing input, samples to mislead a machine learning model into producing undesirable results. Such perturbations are often subtle and imperceptible from a human's perspective. This paper investigates two methods of verifying the visual fidelity of image based datasets by detecting perturbations made to the data using QR codes. In the first method, a verification string is stored for each image in a dataset. These verification strings can be used to determine whether an image in the dataset has been perturbed. In the second method, only a single verification string stored and is used to verify whether an entire dataset is intact.
机译:机器学习在各种现代技术中变得越来越流行。但是,研究表明,机器学习模型在输入中容易受到对抗性示例的攻击。潜在的攻击包括通过扰乱输入来毒害数据集,使误导机器学习模型产生不良结果的样本。从人类的角度来看,这种干扰通常是微妙的和不可察觉的。本文研究了两种通过使用QR码检测对数据造成的扰动来验证基于图像的数据集的视觉保真度的方法。在第一种方法中,为数据集中的每个图像存储一个验证字符串。这些验证字符串可用于确定数据集中的图像是否受到干扰。在第二种方法中,仅存储一个验证字符串,并用于验证整个数据集是否完整。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号