首页> 外文会议>International Conference on Inventive Communication and Computational Technologies >Segmentation of lungs nodules by iterative thresholding method and classification with Reduced Features
【24h】

Segmentation of lungs nodules by iterative thresholding method and classification with Reduced Features

机译:通过迭代阈值法对肺结节进行分割,并对特征进行归类

获取原文

摘要

For lungs cancer detection, manual detection of lung nodules is critical for a radiologist if the size of the nodules are less. Also, due to excessive work pressure, some nodules may be missed during detection. To overcome these situations, an automatic decision making system is required. This paper presents an automatic CAD system based on CT-scan images. The proposed system uses iterative based thresholding method instead of the traditional histogram based thresholding methods. After extraction of the lungs region, nodules present within the region are detected by rule-based filtering method. From the extracted features of the nodules, feature selection process is applied to select the important features for better classification and to reduce the complexity. The proposed method is validated on 142 patients consisting of 500 cases, out of which 306 are nodule candidate. CT-scan images are taken from publically available large dataset LIDC-IDRI (Lung Image Database Consortium and Image Database Resource Initiative) and the images are in DICOM (Digital Imaging and Communications in Medicine) format. This system used 10 k-fold cross-validations to evaluate classifier performance. The proposed method gives an accuracy of 99.4% with polynomial kernel based support vector machine (SVM) classifier and gives 99.96% accuracy using k-nearest neighbourhood (KNN) classifier.
机译:对于肺癌的检测,如果结核的大小较小,则手动检测肺结节对于放射科医生至关重要。另外,由于过大的工作压力,在检测过程中可能会遗漏一些结节。为了克服这些情况,需要一个自动决策系统。本文提出了一种基于CT扫描图像的自动CAD系统。所提出的系统使用基于迭代的阈值方法来代替传统的基于直方图的阈值方法。提取肺区域后,通过基于规则的过滤方法检测该区域内存在的结节。从结节的提取特征中,应用特征选择过程来选择重要特征,以更好地分类并降低复杂性。该方法在142例患者(包括500例患者)中得到了验证,其中306例为结节性候选人。 CT扫描图像是从可公开获得的大型数据集LIDC-IDRI(肺图像数据库联盟和图像数据库资源倡议)中获取的,并且图像均为DICOM(医学数字成像和通信)格式。该系统使用10 k倍交叉验证来评估分类器性能。所提出的方法使用基于多项式核的支持向量机(SVM)分类器可提供99.4%的精度,而使用k最近邻(KNN)分类器可提供99.96%的精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号