首页> 外文会议>International Conference on Internet of Things: Smart Innovation and Usages >Optimal tree led approach for effective decision making to mitigate mortality rates in a varied demographic dataset
【24h】

Optimal tree led approach for effective decision making to mitigate mortality rates in a varied demographic dataset

机译:最佳的树状方法,可以有效地制定决策,以降低人口统计数据集中的死亡率

获取原文

摘要

Decision trees always have been a data structure of choice for taking decisions under various conditions and often provide elegant decision making to resolve complex conditional problems. Optimality is a condition under which parameters of interest have to either minimized or maximized. The principle of Pareto Optimality when applied to test the worth of solution nodes in a decision tree provide for a designated conditional approach to optimize the state reported in the solution nodes. In this paper, an effort has been made to test the leaf nodes of decision trees created by three different condition sets applied on a huge dataset having in excess of 106 entries with multiple attributes using Pareto Optimality principle. The results produced by Pareto Optimality Operator thus designed clearly demarcates the conditions under which the casualty rates can be minimized.
机译:决策树一直是在各种条件下进行决策的首选数据结构,并且经常提供优雅的决策来解决复杂的条件问题。最佳状态是必须最小化或最大化目标参数的条件。当将帕累托最优性原理用于测试决策树中解决方案节点的价值时,它提供了一种指定的条件方法来优化解决方案节点中报告的状态。在本文中,已尝试使用帕累托最优性原理测试由三个不同条件集创建的决策树的叶节点,这些条件集应用于应用于具有多个属性的106个以上条目的巨大数据集。这样设计的帕累托最优性算子产生的结果清楚地划定了可以将伤亡率降至最低的条件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号