首页> 外文会议>International Conference on Intelligent Transportation Systems >Classification of Crash and Near-Crash Events from Dashcam Videos and Telematics
【24h】

Classification of Crash and Near-Crash Events from Dashcam Videos and Telematics

机译:Dashcam视频和远程信息处理对崩溃和近崩溃事件的分类

获取原文

摘要

The identification of dangerous events from sensor data is a fundamental sub-task in domains such as autonomous vehicles and intelligent transportation systems. In this work, we tackle the problem of classifying crash and near-crash events from dashcam videos and telematics data. We propose a method that uses a combination of state-of-the-art approaches in computer vision and machine learning. We use an object detector based on convolutional neural networks to extract semantic information about the road scene, and generate video and telematics features that are fed to a random forest classifier. Computational experiments on the SHRP2 dataset show that our approach reaches more than 0.87 of accuracy on the binary problem of distinguishing dangerous from safe events, and 0.85 on the 3-class problem of discriminating between crash, near-crash, and safe events.
机译:从传感器数据识别危险事件是自动驾驶汽车和智能交通系统等领域的基本子任务。在这项工作中,我们解决了从行车记录仪视频和远程信息处理数据对崩溃和接近崩溃事件进行分类的问题。我们提出了一种在计算机视觉和机器学习中结合使用最新技术的方法。我们使用基于卷积神经网络的对象检测器来提取有关道路场景的语义信息,并生成视频和远程信息处理功能,这些功能将馈入随机森林分类器。在SHRP2数据集上进行的计算实验表明,在区分危险事件与安全事件的二进制问题上,我们的方法达到了0.87的精度,而在区分碰撞,接近碰撞和安全事件的三类问题上,我们的方法达到了0.85的精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号