首页> 外文会议>International Conference on Intelligent Transportation Systems >Reinforcement Learning-Based Bus Holding for High-Frequency Services
【24h】

Reinforcement Learning-Based Bus Holding for High-Frequency Services

机译:基于增强学习的高频服务公交车停靠

获取原文

摘要

Since the bus holding problem is an operational control problem, bus holding decisions should be made in realtime. For this reason, common bus holding approaches, such as the one-headway-based holding, focus on computationally inexpensive, rule-based techniques that try to minimize the deviation of the actual headways from the planned ones. Nevertheless, rule-based methods optimize the system locally without considering the full effect of the bus holding decisions to future trips or other performance indicators. For this reason, this work introduces a Reinforcement Learning approach which is capable of making holistic bus holding decisions in realtime after the completion of a training period. The proposed approach is trained in a circular bus line in Singapore using 400 episodes (where an episode is one day of operations) and evaluated using 200 episodes demonstrating a significant improvement in scenarios with strong travel time disturbances and a slight improvement in scenarios with low travel time variations.
机译:由于总线保持问题是操作控制问题,因此应实时做出总线保持决策。因此,常见的总线保持方法(例如,基于单行距的保持)集中在计算上便宜,基于规则的技术上,这些技术试图使实际行车距与计划行进的偏差最小。然而,基于规则的方法可以在本地优化系统,而无需考虑总线保持决策对未来行程或其他性能指标的全部影响。因此,这项工作引入了强化学习方法,该方法能够在培训期结束后实时做出整体公交车停放决策。拟议的方法在新加坡的循环公交线路上进行了400集(其中一集是一天的运营)的培训,并使用200集进行了评估,证明了在旅行时间干扰严重的情况下的显着改善以及在低旅行场景下的轻微改善时间变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号