首页> 外文会议>International Conference on Intelligent Transportation Systems >Scalable Change Detection from 3D Point Cloud Maps: Invariant Map Coordinate for Joint Viewpoint-Change Localization
【24h】

Scalable Change Detection from 3D Point Cloud Maps: Invariant Map Coordinate for Joint Viewpoint-Change Localization

机译:来自3D点云地图的可伸缩变化检测:用于联合视点变化本地化的不变地图坐标

获取原文

摘要

This study addresses the problem of visual change detection using a 3D point cloud (PC) map acquired by a car-like robot. With recent advances in long-term autonomous navigation, change detection under global viewpoint uncertainty has become a topic of considerable interest. In our study, we extend the traditional two-level pipeline of change detection: (1) scene registration and (2) scene comparison, to enable scalable and efficient change detection. In the traditional pipeline, the registration stage is required to align a given scene pair (i.e., query and reference PC maps) that are taken at different times into the same coordinate system, before comparing the two PCs. However, the registration stage is a time-consuming step, which makes it harder to realize a scalable change detection. Our key concept is to transform every query or reference PC beforehand into an invariant coordinate system, which should be predefined and invariant to environment changes (e.g., dynamic objects, clutters, the mapper vehicle's trajectories), so as to enable a direct comparison of spatial layout between the two different maps. The proposed framework employs an efficient bag-of-local-features (BoLF) scene model and realizes a scalable joint viewpoint-change detection. Change detection experiments using a publicly available cross-season NCLT dataset validate the efficacy of the approach.
机译:这项研究解决了使用类似汽车的机器人获取的3D点云(PC)地图进行视觉变化检测的问题。随着长期自主导航的最新进展,在全局视点不确定性下的变化检测已成为相当令人感兴趣的话题。在我们的研究中,我们扩展了传统的两级变更检测流水线:(1)场景注册和(2)场景比较,以实现可扩展且高效的变更检测。在传统管道中,在比较两台PC之前,需要在注册阶段将在不同时间拍摄的给定场景对(即查询和参考PC地图)对齐到同一坐标系中。但是,注册阶段是一个耗时的步骤,这使得实现可伸缩的更改检测变得更加困难。我们的关键概念是将每个查询或参考PC预先转换为不变的坐标系,该坐标系应预先定义并且对于环境变化(例如,动态对象,杂波,映射器车辆的轨迹)是不变的,以便能够直接比较空间两个不同地图之间的布局。所提出的框架采用了有效的局部特征袋(BoLF)场景模型,并实现了可伸缩的联合视点变化检测。使用公开的跨季节NCLT数据集进行的更改检测实验验证了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号