首页> 外文会议>International Conference on Intelligent Transportation Systems >Zero-shot Deep Reinforcement Learning Driving Policy Transfer for Autonomous Vehicles based on Robust Control
【24h】

Zero-shot Deep Reinforcement Learning Driving Policy Transfer for Autonomous Vehicles based on Robust Control

机译:基于鲁棒控制的自动驾驶零散深强化学习驾驶策略传递

获取原文

摘要

Although deep reinforcement learning (deep RL) methods have lots of strengths that are favorable if applied to autonomous driving, real deep RL applications in autonomous driving have been slowed down by the modeling gap between the source (training) domain and the target (deployment) domain. Unlike current policy transfer approaches, which generally limit to the usage of uninterpretable neural network representations as the transferred features, we propose to transfer concrete kinematic quantities in autonomous driving. The proposed robust-control-based (RC) generic transfer architecture, which we call RL-RC, incorporates a transferable hierarchical RL trajectory planner and a robust tracking controller based on disturbance observer (DOB). The deep RL policies trained with known nominal dynamics model are transferred directly to the target domain, DOB-based robust tracking control is applied to tackle the modeling gap including the vehicle dynamics errors and the external disturbances such as side forces. We provide simulations validating the capability of the proposed method to achieve zero-shot transfer across multiple driving scenarios such as lane keeping, lane changing and obstacle avoidance.
机译:尽管深度强化学习(deep RL)方法具有许多优势,如果将其应用于自动驾驶,则很有利,但是由于源(训练)域和目标(部署)之间的建模差距,实际的深度RL在自动驾驶中的应用已被放慢了速度域。与当前的策略转移方法不同,该方法通常将不可解释的神经网络表示形式用作转移特征,我们建议在自动驾驶中转移具体的运动量。提出的基于鲁棒控制的(RC)通用传输体系结构,我们称为RL-RC,它结合了可转移的分层RL轨迹规划器和基于干扰观测器(DOB)的鲁棒跟踪控制器。用已知的标称动力学模型训练的深度RL策略直接转移到目标域,基于DOB的鲁棒跟踪控制被应用来解决建模差距,包括车辆动力学误差和外部干扰(例如侧向力)。我们提供的仿真验证了所提方法在多种行驶场景(例如车道保持,车道变更和避障)中实现零发车的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号