首页> 外文会议>International Conference on Intelligent Transportation Systems >A New Feature Pyramid Network For Road Scene Segmentation
【24h】

A New Feature Pyramid Network For Road Scene Segmentation

机译:用于道路场景分割的新功能金字塔网络

获取原文

摘要

Road scene segmentation is of great significance in intelligent transportation system for different applications such as autonomous driving and semantic map building. Despite great progress in this field with the deep learning methods, there are still many difficulties such as robust segmentation of small objects and same type of objects with different sizes in different scenes. In this paper, we propose a new pyramid architecture for scene segmentation, which is a top-down architecture with lateral connections for multi-scale semantic feature maps building, and sufficiently incorporate the momentous global scenery prior. Besides, we also propose a novel training method, which combines the re-sampling, pixel-wise cost learning and transfer learning together, to deal with the imbalance problem. Experimental results on KITTI and Cityscapes dataset demonstrate effectiveness of the proposed method.
机译:道路场景分割在智能交通系统中对诸如自动驾驶和语义地图构建等不同应用具有重要意义。尽管深度学习方法在该领域取得了很大进展,但仍然存在许多困难,例如小物体的稳健分割以及不同场景中大小不同的相同类型物体的分割。在本文中,我们提出了一种用于场景分割的新金字塔体系结构,该体系结构是自上而下的,具有横向连接的体系结构,用于多尺度语义特征图的构建,并充分融合了先前的重要全局风光。此外,我们还提出了一种新颖的训练方法,将重采样,逐像素成本学习和转移学习相结合,以解决不平衡问题。在KITTI和Cityscapes数据集上的实验结果证明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号