首页> 外文会议>International Conference on Intelligent System Design and Engineering Applications;ISDEA 2013 >The Training Set Selection Methods of microRNA Precursors Prediction Based on Machine Learning Approaches
【24h】

The Training Set Selection Methods of microRNA Precursors Prediction Based on Machine Learning Approaches

机译:基于机器学习方法的microRNA前体预测训练集选择方法

获取原文

摘要

Micro RNAs (miRNAs) are single-stranded, endogenous ~22nt small non-coding RNAs (sncRNAs) that can play important regulatory roles in animals and plants by targeting mRNA for cleavage or translational repression. miRNAs which have very low expression levels or are expressed at specific stage are difficult to find by biological experiments. Also biological experiment only can find a small amount of miRNAs. Computational approaches have become another important way of miRNA prediction, especially machine learning approaches. miRNA prediction based on machine learning approaches requires a lot of positive and negative samples. The number of miRNA precursors that are experimentally validated is rare. However, the number of the sequence fragments, which are similar to real miRNA precursors in whole genome, is up to millions and millions. It is important to select reasonable samples for constructing high-performance classifier. In this review, the training set samples used for predicting miRNA precursors based on machine learning approaches are summarized.
机译:微小RNA(miRNA)是单链,内源性〜22nt的小非编码RNA(sncRNA),可通过靶向mRNA的裂解或翻译阻遏在动植物中发挥重要的调节作用。表达水平非常低或在特定阶段表达的miRNA很难通过生物学实验找到。此外,生物学实验只能发现少量的miRNA。计算方法已成为miRNA预测的另一种重要方法,尤其是机器学习方法。基于机器学习方法的miRNA预测需要大量正样本和负样本。经过实验验证的miRNA前体的数量很少。但是,与整个基因组中的真实miRNA前体相似的序列片段数量多达数百万个。选择合理的样本对于构建高性能分类器很重要。在这篇综述中,总结了用于基于机器学习方法预测miRNA前体的训练集样本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号