首页> 外文会议>International Conference on Intelligent and Innovative Computing Applications >Modeling the Influence of Large-Scale Circulation Patterns on Precipitation in Mauritius
【24h】

Modeling the Influence of Large-Scale Circulation Patterns on Precipitation in Mauritius

机译:模拟毛里求斯大尺度环流模式对降水的影响

获取原文

摘要

Mauritius suffers from chronic water shortages that can severely impact its economy and the well-being of its population. Both surface and groundwater availability are determined by rainfall, which is in turn influenced by large-scale circulation patterns such as the El Niño Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD). Here we report on the influence of these two teleconnection patterns and present the result of a simple neural network for precipitation forecasting, based on the state of ENSO and IOD. Data from the Vacaos station, for the period 1961 to 2012 is used. We found statistically significant correlation between average winter rainfall and ENSO and IOD indices. The correlation for summer was negligible. The prediction of summer precipitation was less accurate than that of winter precipitation. The findings from this study can help in more efficient planning and management of water resources on the island.
机译:毛里求斯遭受长期的水资源短缺之苦,这可能严重影响其经济和人民的福祉。地表和地下水的可利用性均取决于降雨,而降雨又受诸如厄尔尼诺南方涛动(ENSO)和印度洋偶极子(IOD)等大规模循环模式的影响。在这里,我们报告这两种遥相关模式的影响,并基于ENSO和IOD的状态,介绍了一个简单的神经网络用于降水预报的结果。使用了Vacaos站1961年至2012年的数据。我们发现冬季平均降雨量与ENSO和IOD指数之间存在统计上的显着相关性。夏季的相关性可以忽略不计。夏季降水的预报不如冬季降水的准确。这项研究的结果可以帮助更有效地规划和管理岛上的水资源。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号