首页> 外文会议>International Conference on Intelligent and Innovative Computing Applications >Improving Classification Performance for Minority Classes through the use of Positive-Versus-Negative Ensemble Models
【24h】

Improving Classification Performance for Minority Classes through the use of Positive-Versus-Negative Ensemble Models

机译:通过使用正负组合模型提高少数群体的分类表现

获取原文

摘要

Classification is a commonly used modelling method for data mining. A classification model is a predictive model which is used to predict a categorical value, called a class. Ensemble classification modelling involves the creation of several base models and a combination algorithm for the base model predictions. The classification modelling process uses a set of instances called the training data. Each instance consists of values for the predictor variables and a categorical label called the class. A class is called a minority class if it has a much smaller number of training instances compared to the other classes. This results in a low level of correct classification compared to the classification performance for the majority classes. Positive-versus-negative (pVn) classification has been reported in the literature as an ensemble classification method which is applicable to classification modelling for multi-class prediction tasks. The purpose of this paper is to report on experimental results for the performance of a replication method for improving classification performance for minority classes, using pVn classification modelling. The experimental results demonstrate that the classification accuracy for minority classes can be improved through the use of pVn classification models.
机译:分类是数据挖掘的常用建模方法。分类模型是一种预测模型,用于预测称为类的分类值。集成分类模型涉及创建多个基本模型以及用于基本模型预测的组合算法。分类建模过程使用一组称为训练数据的实例。每个实例均由预测变量的值和称为类的类别标签组成。如果一个班级的培训实例数量比其他班级少,则该班级称为少数派。与大多数类别的分类性能相比,这导致正确分类的水平较低。在文献中已经报道了正对负(pVn)分类作为一种集成分类方法,该方法适用于多类别预测任务的分类建模。本文的目的是报告有关使用pVn分类建模改善少数民族分类性能的复制方法的性能的实验结果。实验结果表明,通过使用pVn分类模型可以提高少数群体分类的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号