首页> 外文会议>International Conference on Information and Communications Technology >Hybrid singular spectrum analysis-ARIMA modelling for direct and indirect forecasting of Farmer's Term of Trade in East Java
【24h】

Hybrid singular spectrum analysis-ARIMA modelling for direct and indirect forecasting of Farmer's Term of Trade in East Java

机译:混合奇异谱分析-ARIMA建模,用于直接和间接预测东爪哇省农民的贸易条件

获取原文

摘要

Agricultural sector has a significant contribution to the economy of East Java. The important role of agricultural sector in East Java needs good planning so that development process can be done as expected goals. Farmer's Terms of Trade (FTT) is one of the indicators that can be used to measure the success of development in the agricultural sector. Therefore, appropriate FTT modelling will be very useful to determine policies in the agricultural sector. SSA is a time series data analysis that aims to decompose the original time series into the sum of its component, i.e. trend, oscillatory, and noise. In previous studies, SSA could provide better forecasting results compared with other methods when used in data with the complex structure such as data with more than one seasonal component. FTT is a time series data composed of several data series with diverse characteristics and more than one type of seasonal component period. It makes the data structure of FTT become complex. In this research, hybrid SSA-ARIMA method is used in FTT forecasting directly and indirectly. The result shows that direct forecasting of FTT using SSA-ARIMA method gives the better result than ARIMA. While on indirect FTT forecasting, ARIMA yields better result than SSA-ARIMA. It shows that SSA-ARIMA provides the better results than ARIMA if applied in complex data. In general, in some FTT forecasting methods and approaches, direct FTT forecasting using the SSA-ARIMA method provides the best forecasting results.
机译:农业部门对东爪哇省的经济做出了重大贡献。东爪哇省农业部门的重要作用需要进行良好的规划,以便按预期目标完成开发过程。农民贸易条件(FTT)是可用于衡量农业部门发展成功程度的指标之一。因此,适当的FTT建模对于确定农业部门的政策将非常有用。 SSA是一个时间序列数据分析,旨在将原始时间序列分解为其组成部分的总和,即趋势,振荡和噪声。在以前的研究中,当将SSA用于具有复杂结构的数据(例如,具有多个季节成分的数据)时,与其他方法相比,可以提供更好的预测结果。 FTT是一个时间序列数据,由具有不同特征的多个数据序列和一种以上的季节性成分周期组成。这使FTT的数据结构变得复杂。在这项研究中,混合SSA-ARIMA方法直接或间接地用于FTT预测中。结果表明,使用SSA-ARIMA方法直接预测FTT比ARIMA具有更好的结果。在进行间接FTT预测时,ARIMA的结果要优于SSA-ARIMA。它表明,如果将SSA-ARIMA用于复杂数据,则其结果要优于ARIMA。通常,在某些FTT预测方法和方法中,使用SSA-ARIMA方法进行的直接FTT预测可提供最佳的预测结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号