首页> 外文会议>International conference on high performance computing workshops >Cache-Aware Roofline Model and Medical Image Processing Optimizations in GPUs
【24h】

Cache-Aware Roofline Model and Medical Image Processing Optimizations in GPUs

机译:GPU中的缓存感知车顶线模型和医学图像处理优化

获取原文

摘要

When optimizing or porting applications to new architectures, a preliminary characterization is necessary to exploit the maximum computing power of the employed devices. Profiling tools are available for numerous architectures and programming models, making it easier to spot possible bottlenecks. However, for a better interpretation of the collected results, current profilers rely on insightful performance models. In this paper, we describe the Cache Aware Roofline Model (CARM) and tools for its generation to enable the performance characterization of GPU architectures and workloads. We use CARM to characterize two kernels that are part of a 3D iterative reconstruction application for Computed Tomography (CT). These two kernels take most of the execution time of the whole method, being therefore suitable for a deeper analysis. By exploring the model and the methodology proposed, the overall performance of the kernels has been improved up to two times compared to the previous implementations.
机译:在优化应用程序或将应用程序移植到新体系结构时,必须进行初步表征才能利用所用设备的最大计算能力。分析工具可用于多种体系结构和编程模型,从而更容易发现可能的瓶颈。但是,为了更好地解释所收集的结果,当前的探查器依赖有洞察力的性能模型。在本文中,我们描述了缓存感知屋顶模型(CARM)及其生成工具,以实现GPU架构和工作负载的性能表征。我们使用CARM来表征两个内核,它们是计算机断层扫描(CT)3D迭代重建应用程序的一部分。这两个内核占用了整个方法的大部分执行时间,因此适合进行更深入的分析。通过探索提出的模型和方法,与以前的实现相比,内核的整体性能提高了两倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号