首页> 外文会议>International Conference on Green Computing and Internet of Things >Predicting the Popularity of Online News using Social Features
【24h】

Predicting the Popularity of Online News using Social Features

机译:使用社交功能预测在线新闻的受欢迎程度

获取原文

摘要

Consuming news via social media is an integral part of our lives. Various news agencies use social media as a medium to spread their content. Popularity prediction of news before publication is a challenging task because it depends on a very large user base. Popularity of news on social platform can be represented using number of likes, shares. We have used number of likes as a popularity measure. In this paper, we first find out features on social platform which can affect popularity of an article. These features and content metadata are fed to various machine learning models. These models are used to predict whether an article is going to be popular or not. Tree based models achieve best results for prediction. These models also show that hashtags, usermentions and other social features are important factors which affect popularity of news.
机译:通过社交媒体消费新闻是我们生活中不可或缺的一部分。各种新闻社都使用社交媒体作为传播其内容的媒介。在发布之前对新闻的流行度进行预测是一项艰巨的任务,因为它取决于非常庞大的用户群。社交平台上新闻的受欢迎程度可以使用喜欢,分享的数量来表示。我们使用喜欢的次数作为受欢迎程度。在本文中,我们首先发现了社交平台上可能影响文章受欢迎程度的功能。这些功能和内容元数据被馈送到各种机器学习模型。这些模型用于预测文章是否会受欢迎。基于树的模型可获得最佳的预测结果。这些模型还表明,标签,用户名和其他社交功能是影响新闻受欢迎程度的重要因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号