【24h】

A Domain Adaptation Method for Neural Machine Translation

机译:神经机器翻译的领域自适应方法

获取原文

摘要

With the globalization and the rapid development of the Internet, machine translation is becoming more widely used in real world applications. However, existing methods are not good enough for domain adaptation translation. Consequently, we may understand the cutting-edge techniques in a field better and faster with the aid of our machine translation. This paper proposes a method of calculating the balance factor based on model fusion algorithm and logarithmic linear interpolation. A neural machine translation technique is used to train a domain adaptation translation model. In our experiments, the BLEU score of the in-domain corpus reaches 43.55, which shows a certain increase when comparing to existing methods.
机译:随着Internet的全球化和快速发展,机器翻译在现实世界的应用中变得越来越广泛。但是,现有方法不足以进行域自适应转换。因此,借助我们的机器翻译,我们可能会更好,更快地了解该领域的尖端技术。提出了一种基于模型融合算法和对数线性插值的平衡因子计算方法。神经机器翻译技术用于训练领域适应翻译模型。在我们的实验中,域内语料库的BLEU得分达到43.55,与现有方法相比,显示出一定的提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号