首页> 外文会议>International Conference on Electrical Engineering and Information Communication Technology >Detection of Flow Based Anomaly in OpenFlow Controller: Machine Learning Approach in Software Defined Networking
【24h】

Detection of Flow Based Anomaly in OpenFlow Controller: Machine Learning Approach in Software Defined Networking

机译:OpenFlow控制器中基于流的异常检测:软件定义网络中的机器学习方法

获取原文

摘要

Software Defined Networking (SDN) has come to prominence in recent years and demonstrates an enormous potential in shaping the future of networking by separating control plane from data plane. OpenFlow is the first and most widely used protocol that makes this separation possible in the first place. As a newly emerged technology, SDN has its inherent security threats that can be eliminated or at least mitigated by securing the OpenFlow controller that manages flow control in SDN. SDN provides us a chance to strengthen our network security by decoupling its control plane and data plane. At this level, there also exists some certain risk, which is associated with this technology. In this research, a flow based anomaly detection method in OpenFlow controller have been approached by using machine-learning algorithms in SDN architecture. In order to improve the classifier performance, some feature selection methods namely Info Gain, Gain Ratio, CFS Subset Evaluator, Symmetric Uncertainty, and Chi-square test have been applied as a processing of dataset. A full dataset of 41 features and a reduced dataset has experimented. A dataset with feature selection ensures the highest accuracy of nearly 82% with Random Forest classifier using Gain Ratio feature selection Evaluator. Experimental results ratify that machine-learning approach with feature selection method indices strong potential for the detection of flow based anomaly in OpenFlow controller.
机译:近年来,软件定义网络(SDN)日益受到关注,并展示了通过将控制平面与数据平面分离来塑造网络未来的巨大潜力。 OpenFlow是第一个也是使用最广泛的协议,它首先使这种分离成为可能。作为一种新兴技术,SDN具有其固有的安全威胁,可以通过保护在SDN中管理流控制的OpenFlow控制器的安全来消除或至少缓解这种威胁。 SDN通过解耦其控制平面和数据平面,为我们提供了增强网络安全性的机会。在此级别上,还存在某些与此技术相关的风险。在这项研究中,通过在SDN体系结构中使用机器学习算法,研究了OpenFlow控制器中基于流的异常检测方法。为了提高分类器的性能,一些特征选择方法即信息增益,增益比,CFS子集评估器,对称不确定性和卡方检验已被用作数据集的处理。实验了41个特征的完整数据集和简化的数据集。具有特征选择的数据集可通过使用增益比率特征选择评估器的随机森林分类器确保近82%的最高准确性。实验结果证明,采用特征选择方法的机器学习方法具有很大的潜力,可用于检测OpenFlow控制器中基于流的异常。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号