首页> 外文会议>International Conference on Current Trends towards Converging Technologies >A Personalized Recommendation System using Memory-Based Collaborative Filtering Algorithm
【24h】

A Personalized Recommendation System using Memory-Based Collaborative Filtering Algorithm

机译:使用基于内存的协同过滤算法的个性化推荐系统

获取原文

摘要

In recent years, with the exponential increase in Web usage, Recommendation Systems are being popularly used by various E-commerce sites to give remarkable recommendations to their users, such that the users as well as providers will get benefited. This paper presents a Personalized Recommendation System, which gives top most recommendations to both registered and unregistered users. The proposed Personalized Recommendation System is based on the most popular Collaborative Filtering (CF) technique, which uses the Item ratings available with the registered users' profile to provide recommendations. The performance of the proposed system is 10-fold cross validated on benchmark BookLens and MovieLens datasets of GroupLens Repository.
机译:近年来,随着Web使用的指数级增长,各种电子商务站点都广泛使用“推荐系统”向其用户提供出色的推荐,从而使用户和提供者受益。本文介绍了一个个性化推荐系统,该系统可以为注册用户和未注册用户提供最多的推荐。拟议的个性化推荐系统基于最流行的协作过滤(CF)技术,该技术使用注册用户的个人资料中可用的项目等级来提供推荐。拟议系统的性能在GroupLens存储库的基准BookLens和MovieLens数据集上进行了10倍交叉验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号