首页> 外文会议>International Conference on Control, Automation and Systems >Semantic Indoor Scene Recognition of Time-Series Arial Images from a Micro Air Vehicle Mounted Monocular Camera
【24h】

Semantic Indoor Scene Recognition of Time-Series Arial Images from a Micro Air Vehicle Mounted Monocular Camera

机译:微型车载单目相机对时间序列航拍图像的语义室内场景识别

获取原文

摘要

This paper presents a semantic scene recognition method from indoor aerial time-series images obtained using a micro air vehicle (MAV). Using category maps, topologies of image features are mapped into a low-dimensional space based on competitive and neighborhood learning. The proposed method comprises two phases: a codebook feature description phase and a recognition phase using category maps. For the former phase, codebooks are created automatically as visual words using self-organizing maps (SOMs) after extracting part-based local features using a part-based descriptor from time-series scene images. For the latter phase, category maps are created using counter propagation networks (CPNs) with extraction of category boundaries using a unified distance matrix (U-Matrix). With manual MAV operation, we obtained aerial time-series image datasets of five sets for two flight routes: a round flight route and a zigzag flight route. The experimentally obtained results with leave-one-out cross-validation (LOOCV) for datasets divided with 10 zones revealed respective mean recognition accuracies for the round flight datasets and zigzag flight datasets of 71.7% and 65.5%. The created category maps addressed the complexity of scenes because of segmented categories in both flight datasets.
机译:本文提出了一种基于微型飞机(MAV)获得的室内空中时间序列图像的语义场景识别方法。使用类别图,可基于竞争和邻域学习将图像特征的拓扑映射到低维空间。所提出的方法包括两个阶段:码本特征描述阶段和使用类别映射的识别阶段。对于前一个阶段,在从时序场景图像中使用基于零件的描述符提取基于零件的局部特征之后,使用自组织映射(SOM)自动将编码本创建为视觉单词。对于后一个阶段,使用反向传播网络(CPN)创建类别图,并使用统一距离矩阵(U-Matrix)提取类别边界。通过手动MAV操作,我们获得了两条飞行路线(往返飞行路线和之字形飞行路线)的五组航空时间序列图像数据集。用留一法交叉验证(LOOCV)对10个区域划分的数据集进行实验获得的结果显示,往返飞行数据集和之字形飞行数据集的平均识别精度分别为71.7%和65.5%。由于两个飞行数据集中的细分类别,因此创建的类别图解决了场景的复杂性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号