首页> 外文会议>International Conference on Control, Automation and Systems >Localization for Automatic Parking System using Interacting Multiple Model Kalman Filter with Rear-View Camera
【24h】

Localization for Automatic Parking System using Interacting Multiple Model Kalman Filter with Rear-View Camera

机译:交互式多模型卡尔曼滤波器与后视摄像头的自动泊车系统定位

获取原文

摘要

This paper presents a new vehicle localization method that improves rear-view camera usage during automatic parking. Measuring the position of a parking stall with cameras is significantly affected by vehicle's pitch motion during parking. The pitch motion is influenced by the number of passengers and its jerk while moving backward, and leads to inaccurate distance measurement during parking. To cope with the problem, a new vehicle localization using an interacting multiple model (IMM) Kalman filter is proposed. The IMM filter is to improve the accuracy of the camera measurement influenced by pitch changes during backward motion. In this paper, we used two models based on the car's pitch motion. We obtained improved vehicle localization performance using the IMM Kalman filter and validated its performance experimentally via a real-vehicle experiment with a various number of passengers.
机译:本文提出了一种新的车辆定位方法,该方法可在自动停车期间提高后视摄像头的使用率。在停车期间,用摄像机测量停车位的位置会明显受到车辆俯仰运动的影响。俯仰运动受到后退时乘客数量及其晃动度的影响,并导致停车期间距离测量不准确。为了解决该问题,提出了使用交互多模型(IMM)卡尔曼滤波器的新车辆定位。 IMM滤波器将提高后退期间俯仰变化影响相机测量的准确性。在本文中,我们基于汽车的俯仰运动使用了两种模型。我们使用IMM卡尔曼滤波器获得了改进的车辆定位性能,并通过针对不同乘客的真实车辆实验,通过实验验证了其性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号