首页> 外文会议>International Conference on Computing for Sustainable Global Development >Software bug localization using Pachinko Allocation Model
【24h】

Software bug localization using Pachinko Allocation Model

机译:使用Pachinko分配模型进行软件错误本地化

获取原文

摘要

Bug localization is the process of identifying the elements of source code that require modification to fix the bug. By automating the task of bug localization efficiently, the cost of software can also be reduced. For performing bug localization, many Information Retrieval models have been used in past. In this paper, bug localization has been performed using Pachinko Allocation Model (PAM). PAM is also an IR model, which falls under the category of topic models and has not been used for locating bugs yet. This paper describes the proposed PAM based approach for bug localization at file level. The PAM based approach is compared with LDA based approach and it has been shown that PAM based bug localization performs better as compared to LDA based bug localization. For evaluating the performance of PAM and LDA based approaches, the datasets downloaded from two open source projects, i.e. Rhino and ModeShape, have been used.
机译:错误本地化是识别需要修改以修复错误的源代码元素的过程。通过有效地使错误本地化任务自动化,还可以降低软件成本。为了执行错误本地化,过去已经使用了许多信息检索模型。在本文中,已使用Pachinko分配模型(PAM)进行了错误定位。 PAM还是一个IR模型,属于主题模型的类别,并且尚未用于查找错误。本文介绍了基于PAM的文件级别错误本地化方法。将基于PAM的方法与基于LDA的方法进行了比较,结果表明,与基于LDA的错误本地化相比,基于PAM的错误本地化表现更好。为了评估基于PAM和LDA的方法的性能,已使用从两个开源项目Rhino和ModeShape下载的数据集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号