首页> 外文期刊>International journal of computational vision and robotics >Content-based image retrieval with pachinko allocation model and a combination of colour, texture and text features
【24h】

Content-based image retrieval with pachinko allocation model and a combination of colour, texture and text features

机译:带有弹球分配模型并结合了颜色,纹理和文本特征的基于内容的图像检索

获取原文
获取原文并翻译 | 示例

摘要

We present in this paper a content-based image retrieval system (CBIR) based on pachinko allocation model (PAM) and employing a combination of colour, texture and textual features. PAM is a probabilistic topic model which captures correlation not only between words in documents but also between different topics (concepts) responsible of their generation. Regardless this advantage of PAM, there is no work which explores its utility for content based image retrieval tasks. We aim to evaluate the use of PAM for CBIRs by implementing a system based on it. In this context, PAM was applied with two different modalities of features, image global features and textual indexes separately and combined. Mean average precision is evaluated. The use of PAM with combination of features has slightly improved results of using it with just one modality, this opens more perspective in order to enhance results.
机译:我们在本文中提出了一种基于弹球分配模型(PAM)的基于内容的图像检索系统(CBIR),该系统采用了颜色,纹理和文本特征的组合。 PAM是一种概率主题模型,它不仅捕获文档中单词之间的相关性,还捕获负责其生成的不同主题(概念)之间的相关性。不管PAM的优点如何,都没有工作探索其在基于内容的图像检索任务中的实用性。我们旨在通过实施基于PAM的系统来评估PAM在CBIR中的使用。在这种情况下,PAM分别应用了两种不同的特征模式:图像全局特征和文本索引。评估平均平均精度。将PAM与功能组合一起使用时,将其与一种模式一起使用的结果略有改善,这为增强结果打开了更多的视野。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号