首页> 外文会议>International Conference on Computer Vision >Computational Hyperspectral Imaging Based on Dimension-Discriminative Low-Rank Tensor Recovery
【24h】

Computational Hyperspectral Imaging Based on Dimension-Discriminative Low-Rank Tensor Recovery

机译:基于尺寸判别低秩张量恢复的计算高光谱成像

获取原文

摘要

Exploiting the prior information is fundamental for the image reconstruction in computational hyperspectral imaging. Existing methods usually unfold the 3D signal as a 1D vector and treat the prior information within different dimensions in an indiscriminative manner, which ignores the high-dimensionality nature of hyperspectral image (HSI) and thus results in poor quality reconstruction. In this paper, we propose to make full use of the high-dimensionality structure of the desired HSI to boost the reconstruction quality. We first build a high-order tensor by exploiting the nonlocal similarity in HSI. Then, we propose a dimension-discriminative low-rank tensor recovery (DLTR) model to characterize the structure prior adaptively in each dimension. By integrating the structure prior in DLTR with the system imaging process, we develop an optimization framework for HSI reconstruction, which is finally solved via the alternating minimization algorithm. Extensive experiments implemented with both synthetic and real data demonstrate that our method outperforms state-of-the-art methods.
机译:利用先验信息是计算高光谱成像中图像重建的基础。现有方法通常将3D信号作为1D向量展开,并以不加区别的方式对待不同维度内的先验信息,这忽略了高光谱图像(HSI)的高维度性质,因此导致质量较差的重建。在本文中,我们建议充分利用所需HSI的高维结构来提高重建质量。我们首先通过利用HSI中的非局部相似性来构建高阶张量。然后,我们提出了一种区分维度的低秩张量恢复(DLTR)模型,以在每个维度上自适应地表征结构。通过将DLTR中的先验结构与系统成像过程集成在一起,我们开发了用于HSI重建的优化框架,最终通过交替最小化算法解决了该问题。使用合成数据和真实数据进行的大量实验表明,我们的方法优于最新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号