首页> 外文期刊>Computer vision and image understanding >Hyperspectral image restoration via CNN denoiser prior regularized low-rank tensor recovery
【24h】

Hyperspectral image restoration via CNN denoiser prior regularized low-rank tensor recovery

机译:高光谱图像恢复通过CNN Denoiser先前正则化低级张力恢复

获取原文
获取原文并翻译 | 示例

摘要

Hyperspectral images (HSIs) are widely used in various tasks such as mineral detection and food safety. However, during the imaging process, they are often contaminated by various noises. In this paper for HSIs restoration tasks, we firstly investigate the advantages of traditional physical restoration models and the denoising convolutional neural networks (CNN). For the physical prior of HSIs, a Tucker decomposition based low-rank tensor approximation can fully explore the global correlations in both the spatial and spectral domains. And for the implicit prior, a CNN based method can represent the prior which cannot be designed by mathematical theory tools. Then, we combine the advantages of the two methods to introduce the HSI restoration CNN with the low-rank tensor approximation based regularization in the flexible and extensible plug-and-play framework. The proposed model can be quickly solved using the alternating direction method of multipliers method. Experiments with simulated data and real data show that, compared with competitive methods, the proposed method achieves better HSI restoration results in various quantitative evaluation indicators.
机译:高光谱图像(HSIS)广泛用于各种任务,如矿物检测和食品安全。然而,在成像过程中,它们通常被各种噪声污染。在本文中,我们首先调查传统物理恢复模型和去噪卷积神经网络(CNN)的优势。对于HSI的物理之前,基于Tucker分解的低级张量近似可以完全探索空间和光谱域中的全局相关性。对于隐式的先验,基于CNN的方法可以表示不能由数学理论工具设计的先前。然后,我们将这两种方法的优点与柔性和可扩展的即插即用框架中的基于低级张量近似的正则化引入HSI恢复CNN。可以使用乘法器方法的交替方向方法快速解决所提出的模型。模拟数据和实际数据的实验表明,与竞争方法相比,所提出的方法达到了各种定量评估指标的最佳HSI恢复。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号