首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Regularizing Hyperspectral and Multispectral Image Fusion by CNN Denoiser
【24h】

Regularizing Hyperspectral and Multispectral Image Fusion by CNN Denoiser

机译:CNN Denoiser规范高光谱和多光谱图像融合

获取原文
获取原文并翻译 | 示例

摘要

Hyperspectral image (HSI) and multispectral image (MSI) fusion, which fuses a low-spatial-resolution HSI (LR-HSI) with a higher resolution multispectral image (MSI), has become a common scheme to obtain high-resolution HSI (HR-HSI). This article presents a novel HSI and MSI fusion method (called as CNN-Fus), which is based on the subspace representation and convolutional neural network (CNN) denoiser, i.e., a well-trained CNN for gray image denoising. Our method only needs to train the CNN on the more accessible gray images and can be directly used for any HSI and MSI data sets without retraining. First, to exploit the high correlations among the spectral bands, we approximate the desired HR-HSI with the low-dimensional subspace multiplied by the coefficients, which can not only speed up the algorithm but also lead to more accurate recovery. Since the spectral information mainly exists in the LR-HSI, we learn the subspace from it via singular value decomposition. Due to the powerful learning performance and high speed of CNN, we use the well-trained CNN for gray image denoising to regularize the estimation of coefficients. Specifically, we plug the CNN denoiser into the alternating direction method of multipliers (ADMM) algorithm to estimate the coefficients. Experiments demonstrate that our method has superior performance over the state-of-the-art fusion methods.
机译:高光谱图像(HSI)和多光谱图像(MSI)融合,其具有较高分辨率的多光谱图像(MSI)的低空间分辨率HSI(LR-HSI),已成为获得高分辨率HSI的公共方案(HR -HSI)。本文提出了一种新颖的HSI和MSI融合方法(称为CNN-FU),其基于子空间表示和卷积神经网络(CNN)Denoiser,即,用于灰色图像去噪的训练有素的CNN。我们的方法只需要在更可靠的灰度图像上培训CNN,并且可以直接用于任何HSI和MSI数据集而不会再培训。首先,利用光谱频带之间的高相关性,我们将所需的HR-HSI乘以低维子空间乘以系数,这不仅可以加速算法,而且还导致更准确的恢复。由于光谱信息主要存在于LR-HSI中,因此我们通过奇异值分解从中学习子空间。由于CNN的强大学习性能和高速,我们使用训练有素的CNN用于灰色图像去噪,以规则估算系数。具体地,我们将CNN Denoiser插入乘法器(ADMM)算法的交替方向方法,以估计系数。实验表明,我们的方法对最先进的融合方法具有卓越的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号