首页> 外文OA文献 >Weighted Low-Rank Tensor Recovery for Hyperspectral Image Restoration
【2h】

Weighted Low-Rank Tensor Recovery for Hyperspectral Image Restoration

机译:高光谱图像恢复的加权低级张量恢复

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Hyperspectral imaging, providing abundant spatial and spectral informationsimultaneously, has attracted a lot of interest in recent years. Unfortunately,due to the hardware limitations, the hyperspectral image (HSI) is vulnerable tovarious degradations, such noises (random noise, HSI denoising), blurs(Gaussian and uniform blur, HSI deblurring), and down-sampled (both spectraland spatial downsample, HSI super-resolution). Previous HSI restoration methodsare designed for one specific task only. Besides, most of them start from the1-D vector or 2-D matrix models and cannot fully exploit the structurallyspectral-spatial correlation in 3-D HSI. To overcome these limitations, in thiswork, we propose a unified low-rank tensor recovery model for comprehensive HSIrestoration tasks, in which non-local similarity between spectral-spatial cubicand spectral correlation are simultaneously captured by 3-order tensors.Further, to improve the capability and flexibility, we formulate it as aweighted low-rank tensor recovery (WLRTR) model by treating the singular valuesdifferently, and study its analytical solution. We also consider the exclusivestripe noise in HSI as the gross error by extending WLRTR to robust principalcomponent analysis (WLRTR-RPCA). Extensive experiments demonstrate the proposedWLRTR models consistently outperform state-of-the-arts in typical low levelvision HSI tasks, including denoising, destriping, deblurring andsuper-resolution.
机译:高光谱成像,提供丰富的空间和光谱信息,近年来吸引了很多兴趣。遗憾的是,由于硬件限制,高光谱图像(HSI)是易受攻击的冒劣降级,这种噪声(随机噪声,HSI去噪),模糊(高斯和均匀的模糊,HSI去束缚)和下采样(透明的(Spectraland Spatial Downample), HSI超级分辨率)。以前的HSI恢复方法仅针对一个特定任务设计。此外,大多数人从1-D向量或2-D矩阵模型开始,无法充分利用3-D HSI中的结构性光谱空间相关性。为了克服这些限制,在本文中,我们提出了一个统一的低级张量恢复模型,用于综合HsiStoration任务,其中频谱空间立方体和光谱相关之间的非局部相似性同时被3阶张量捕获.Further,以改善能力和灵活性,我们将其制定它是可吸引的低级张量恢复(WLRTR)模型通过处理单数值等地,并研究其分析解决方案。我们还通过将WLRTR扩展到强大的校长分析(WLRTR-RPCA)来考虑HSI中的ExtusiveStripe噪音作为总误差。广泛的实验证明了ProposeWLRRTR的模型在典型的低级别HSI任务中始终如一地优于最先进的,包括去噪,消除,去孔和普通分辨率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号