首页> 外文会议>International Conference on Computer Vision >Deep Joint-Semantics Reconstructing Hashing for Large-Scale Unsupervised Cross-Modal Retrieval
【24h】

Deep Joint-Semantics Reconstructing Hashing for Large-Scale Unsupervised Cross-Modal Retrieval

机译:用于大规模无监督跨模态检索的深度联合语义重构散列

获取原文

摘要

Cross-modal hashing encodes the multimedia data into a common binary hash space in which the correlations among the samples from different modalities can be effectively measured. Deep cross-modal hashing further improves the retrieval performance as the deep neural networks can generate more semantic relevant features and hash codes. In this paper, we study the unsupervised deep cross-modal hash coding and propose Deep Joint-Semantics Reconstructing Hashing (DJSRH), which has the following two main advantages. First, to learn binary codes that preserve the neighborhood structure of the original data, DJSRH constructs a novel joint-semantics affinity matrix which elaborately integrates the original neighborhood information from different modalities and accordingly is capable to capture the latent intrinsic semantic affinity for the input multi-modal instances. Second, DJSRH later trains the networks to generate binary codes that maximally reconstruct above joint-semantics relations via the proposed reconstructing framework, which is more competent for the batch-wise training as it reconstructs the specific similarity value unlike the common Laplacian constraint merely preserving the similarity order. Extensive experiments demonstrate the significant improvement by DJSRH in various cross-modal retrieval tasks.
机译:跨模态哈希将多媒体数据编码到一个公共的二进制哈希空间中,可以有效地测量来自不同模态的样本之间的相关性。由于深度神经网络可以生成更多语义相关的特征和哈希码,因此深度跨模式哈希进一步提高了检索性能。在本文中,我们研究了无监督的深度交叉模式哈希编码,并提出了深度联合语义重建哈希(DJSRH),它具有以下两个主要优点。首先,为了学习保留原始数据邻域结构的二进制代码,DJSRH构造了一个新颖的联合语义亲和度矩阵,该矩阵精心整合了来自不同模态的原始邻域信息,因此能够捕获输入多语言的潜在固有语义亲和度。 -modal实例。其次,DJSRH随后训练网络,以通过提议的重构框架最大程度地重构上述联合语义关系,从而更有效地进行二进制训练,因为它重构了特定的相似性值,而不像普通的Laplacian约束那样仅仅保留了相似顺序。大量的实验表明,DJSRH在各种交叉模式检索任务中都有显着改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号