首页> 外文会议>International Conference on Computer Vision >Liquid Warping GAN: A Unified Framework for Human Motion Imitation, Appearance Transfer and Novel View Synthesis
【24h】

Liquid Warping GAN: A Unified Framework for Human Motion Imitation, Appearance Transfer and Novel View Synthesis

机译:Liquid Warping GAN:模仿人体运动,外观转移和新颖视图合成的统一框架

获取原文

摘要

We tackle the human motion imitation, appearance transfer, and novel view synthesis within a unified framework, which means that the model once being trained can be used to handle all these tasks. The existing task-specific methods mainly use 2D keypoints (pose) to estimate the human body structure. However, they only expresses the position information with no abilities to characterize the personalized shape of the individual person and model the limbs rotations. In this paper, we propose to use a 3D body mesh recovery module to disentangle the pose and shape, which can not only model the joint location and rotation but also characterize the personalized body shape. To preserve the source information, such as texture, style, color, and face identity, we propose a Liquid Warping GAN with Liquid Warping Block (LWB) that propagates the source information in both image and feature spaces, and synthesizes an image with respect to the reference. Specifically, the source features are extracted by a denoising convolutional auto-encoder for characterizing the source identity well. Furthermore, our proposed method is able to support a more flexible warping from multiple sources. In addition, we build a new dataset, namely Impersonator (iPER) dataset, for the evaluation of human motion imitation, appearance transfer, and novel view synthesis. Extensive experiments demonstrate the effectiveness of our method in several aspects, such as robustness in occlusion case and preserving face identity, shape consistency and clothes details. All codes and datasets are available on https://svip-lab.github.io/project/impersonator.html.
机译:我们在一个统一的框架内处理仿人运动,外观转移和新颖的视图合成,这意味着该模型一旦经过训练即可用于处理所有这些任务。现有的特定于任务的方法主要使用2D关键点(姿势)来估计人体结构。但是,它们仅表达位置信息,而无法表征个人的个性化形状并模拟肢体旋转。在本文中,我们建议使用3D身体网格恢复模块来解开姿势和形状,该模块不仅可以建模关节的位置和旋转,而且可以表征个性化的身体形状。为了保留源信息,例如纹理,样式,颜色和脸部身份,我们提出了一种带有液体翘曲块(LWB)的液体翘曲GAN,它可以在图像和特征空间中传播源信息,并针对参考资料。具体地,通过降噪卷积自动编码器提取源特征以很好地表征源身份。此外,我们提出的方法能够支持来自多个来源的更灵活的变形。此外,我们建立了一个新的数据集,即模仿者(iPER)数据集,用于评估人体运动模仿,外观转移和新颖的视图合成。大量的实验证明了我们方法在多个方面的有效性,例如在遮盖情况下的鲁棒性以及保持面部身份,形状一致性和衣服细节。所有代码和数据集均可在https://svip-lab.github.io/project/impersonator.html上获得。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号