首页> 外文会议>International Conference on Computer Vision >DeepGCNs: Can GCNs Go As Deep As CNNs?
【24h】

DeepGCNs: Can GCNs Go As Deep As CNNs?

机译:DeepGCN:GCN可以像CNN一样深入吗?

获取原文

摘要

Convolutional Neural Networks (CNNs) achieve impressive performance in a wide variety of fields. Their success benefited from a massive boost when very deep CNN models were able to be reliably trained. Despite their merits, CNNs fail to properly address problems with non-Euclidean data. To overcome this challenge, Graph Convolutional Networks (GCNs) build graphs to represent non-Euclidean data, borrow concepts from CNNs, and apply them in training. GCNs show promising results, but they are usually limited to very shallow models due to the vanishing gradient problem. As a result, most state-of-the-art GCN models are no deeper than 3 or 4 layers. In this work, we present new ways to successfully train very deep GCNs. We do this by borrowing concepts from CNNs, specifically residual/dense connections and dilated convolutions, and adapting them to GCN architectures. Extensive experiments show the positive effect of these deep GCN frameworks. Finally, we use these new concepts to build a very deep 56-layer GCN, and show how it significantly boosts performance (+3.7% mIoU over state-of-the-art) in the task of point cloud semantic segmentation. We believe that the community can greatly benefit from this work, as it opens up many opportunities for advancing GCN-based research.
机译:卷积神经网络(CNN)在广泛的领域中均取得了令人印象深刻的性能。当能够深度可靠地训练非常深的CNN模型时,他们的成功得益于巨大的推动力。尽管有其优点,但CNN无法正确解决非欧几里得数据的问题。为了克服这一挑战,图卷积网络(GCN)建立了表示非欧几里得数据的图,从CNN中借鉴了概念,并将其应用于训练中。 GCN显示出令人鼓舞的结果,但由于梯度问题消失,它们通常仅限于非常浅的模型。因此,大多数最新的GCN模型的深度都不超过3或4层。在这项工作中,我们提出了成功训练非常深的GCN的新方法。为此,我们借鉴了CNN的概念,特别是残差/密集连接和膨胀卷积,并将其调整为GCN架构。大量的实验表明了这些深层的GCN框架的积极作用。最后,我们使用这些新概念构建了一个非常深的56层GCN,并展示了它在点云语义分割任务中如何显着提高性能(与最新技术相比提高了3.3%mIoU)。我们相信社区可以从这项工作中大大受益,因为它为推进基于GCN的研究提供了许多机会。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号