首页> 外文会议>International Conference on Computer Vision >Is an Affine Constraint Needed for Affine Subspace Clustering?
【24h】

Is an Affine Constraint Needed for Affine Subspace Clustering?

机译:仿射子空间聚类是否需要仿射约束?

获取原文

摘要

Subspace clustering methods based on expressing each data point as a linear combination of other data points have achieved great success in computer vision applications such as motion segmentation, face and digit clustering. In face clustering, the subspaces are linear and subspace clustering methods can be applied directly. In motion segmentation, the subspaces are affine and an additional affine constraint on the coefficients is often enforced. However, since affine subspaces can always be embedded into linear subspaces of one extra dimension, it is unclear if the affine constraint is really necessary. This paper shows, both theoretically and empirically, that when the dimension of the ambient space is high relative to the sum of the dimensions of the affine subspaces, the affine constraint has a negligible effect on clustering performance. Specifically, our analysis provides conditions that guarantee the correctness of affine subspace clustering methods both with and without the affine constraint, and shows that these conditions are satisfied for high-dimensional data. Underlying our analysis is the notion of affinely independent subspaces, which not only provides geometrically interpretable correctness conditions, but also clarifies the relationships between existing results for affine subspace clustering.
机译:基于将每个数据点表示为其他数据点的线性组合的子空间聚类方法在计算机视觉应用(例如运动分割,面部和数字聚类)中取得了巨大的成功。在人脸聚类中,子空间是线性的,可以直接应用子空间聚类方法。在运动分割中,子空间是仿射的,并且通常对系数施加附加的仿射约束。但是,由于仿射子空间总是可以嵌入到一维的线性子空间中,因此尚不清楚仿射约束是否确实必要。本文在理论上和经验上都表明,当环境空间的尺寸相对于仿射子空间的尺寸之和较高时,仿射约束对聚类性能的影响可忽略不计。具体而言,我们的分析提供了在有和没有仿射约束的情况下均能保证仿射子空间聚类方法正确性的条件,并表明这些条件对于高维数据是满足的。我们分析的基础是仿射独立子空间的概念,它不仅提供了几何上可解释的正确性条件,而且阐明了仿射子空间聚类的现有结果之间的关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号