首页> 外文会议>International Conference on Computer Vision >Pareto Meets Huber: Efficiently Avoiding Poor Minima in Robust Estimation
【24h】

Pareto Meets Huber: Efficiently Avoiding Poor Minima in Robust Estimation

机译:帕累托遇到胡贝尔:有效地避免稳健估计中的极小值

获取原文

摘要

Robust cost optimization is the task of fitting parameters to data points containing outliers. In particular, we focus on large-scale computer vision problems, such as bundle adjustment, where Non-Linear Least Square (NLLS) solvers are the current workhorse. In this context, NLLS-based state of the art algorithms have been designed either to quickly improve the target objective and find a local minimum close to the initial value of the parameters, or to have a strong ability to escape poor local minima. In this paper, we propose a novel algorithm relying on multi-objective optimization which allows to match those two properties. We experimentally demonstrate that our algorithm has an ability to escape poor local minima that is on par with the best performing algorithms with a faster decrease of the target objective.
机译:稳健的成本优化是将参数拟合到包含异常值的数据点的任务。特别是,我们专注于大规模计算机视觉问题,例如捆绑调整,其中非线性最小二乘(NLLS)求解器是当前的主力军。在这种情况下,已经设计了基于NLLS的最新算法,以快速改善目标目标并找到接近参数初始值的局部最小值,或者具有较强的逃避较差的局部最小值的能力。在本文中,我们提出了一种基于多目标优化的新颖算法,该算法可以匹配这两个属性。我们通过实验证明了我们的算法具有逃避较差的局部最小值的能力,该能力与性能最佳的算法相当,目标目标的降低速度更快。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号