首页> 外文会议>International Conference on Computer Vision >Few-Shot Learning With Embedded Class Models and Shot-Free Meta Training
【24h】

Few-Shot Learning With Embedded Class Models and Shot-Free Meta Training

机译:嵌入式课程模型和无铅元训练的快速学习

获取原文

摘要

We propose a method for learning embeddings for few-shot learning that is suitable for use with any number of shots (shot-free). Rather than fixing the class prototypes to be the Euclidean average of sample embeddings, we allow them to live in a higher-dimensional space (embedded class models) and learn the prototypes along with the model parameters. The class representation function is defined implicitly, which allows us to deal with a variable number of shots per class with a simple constant-size architecture. The class embedding encompasses metric learning, that facilitates adding new classes without crowding the class representation space. Despite being general and not tuned to the benchmark, our approach achieves state-of-the-art performance on the standard few-shot benchmark datasets.
机译:我们提出了一种适用于少拍学习的嵌入学习方法,适用于任意数量的拍(无拍)。我们不是将类原型固定为样本嵌入的欧几里得平均,而是让它们生活在更高维度的空间(嵌入式类模型)中,并与模型参数一起学习原型。类表示函数是隐式定义的,它使我们能够使用简单的恒定大小体系结构处理每个类的可变数量的镜头。类嵌入包含度量学习,这有助于在不占用类表示空间的情况下添加新类。尽管通用且未调整到基准,但我们的方法在标准的少量基准基准数据集上实现了最先进的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号