首页> 外文会议>International Conference on Computer Vision >The Trajectron: Probabilistic Multi-Agent Trajectory Modeling With Dynamic Spatiotemporal Graphs
【24h】

The Trajectron: Probabilistic Multi-Agent Trajectory Modeling With Dynamic Spatiotemporal Graphs

机译:弹道:动态时空图的概率多Agent弹道建模

获取原文

摘要

Developing safe human-robot interaction systems is a necessary step towards the widespread integration of autonomous agents in society. A key component of such systems is the ability to reason about the many potential futures (e.g. trajectories) of other agents in the scene. Towards this end, we present the Trajectron, a graph-structured model that predicts many potential future trajectories of multiple agents simultaneously in both highly dynamic and multimodal scenarios (i.e. where the number of agents in the scene is time-varying and there are many possible highly-distinct futures for each agent). It combines tools from recurrent sequence modeling and variational deep generative modeling to produce a distribution of future trajectories for each agent in a scene. We demonstrate the performance of our model on several datasets, obtaining state-of-the-art results on standard trajectory prediction metrics as well as introducing a new metric for comparing models that output distributions.
机译:开发安全的人机交互系统是实现自治机构在社会中广泛融合的必要步骤。这种系统的关键组成部分是能够对场景中其他主体的许多潜在未来(例如轨迹)进行推理的能力。为此,我们提出了Trajectron,这是一种图结构模型,可以在高动态和多模式场景下(即,场景中的代理数量随时间变化并且有很多可能的情况)同时预测多个代理的许多潜在未来轨迹每个代理商的期货价格都非常不同)。它结合了循环序列建模和变体深度生成建模中的工具,以生成场景中每个主体的未来轨迹分布。我们演示了我们的模型在多个数据集上的性能,获得了标准轨迹预测指标的最新结果,并引入了一种新指标来比较输出分布的模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号