【24h】

Improving Recommendations in Tag-Based Systems with Spectral Clustering of Tag Neighbors

机译:使用标签邻居的频谱聚类改进基于标签的系统中的建议

获取原文

摘要

Tag as a useful metadata reflects the collaborative and conceptual features of documents in social collaborative annotation systems. In this paper, we propose a collaborative approach for expanding tag neighbors and investigate the spectral clustering algorithm to filter out noisy tag neighbors in order to get appropriate recommendation for users. The preliminary experiments have been conducted on MovieLens dataset to compare our proposed approach with the traditional collaborative filtering recommendation approach and naive tag neighbors expansion approach in terms of precision, and the result demonstrates that our approach could considerably improve the performance of recommendations.
机译:标记作为有用的元数据反映了社交协作注释系统中文档的协作和概念特征。在本文中,我们提出了一种扩展标签邻居的协作方法,并研究了频谱聚类算法以过滤出嘈杂的标签邻居,以便为用户提供适当的推荐。在MovieLens数据集上进行了初步实验,以比较我们提出的方法与传统的协作过滤推荐方法和朴素标签邻居扩展方法的精度,结果表明我们的方法可以大大提高推荐性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号