首页> 外文会议>International Conference on Computational Science and its Applications >The Use of Spaceborne and Oceanic Sensors to Model Dengue Incidence in the Outbreak Surveillance System
【24h】

The Use of Spaceborne and Oceanic Sensors to Model Dengue Incidence in the Outbreak Surveillance System

机译:利用星载和海洋传感器对暴发监测系统中的登革热发病率进行建模

获取原文

摘要

This research focuses on the development of a computational data-driven modeling method to be used in the dengue outbreak surveillance system. The outbreak-level forecasting is based on the estimation of dengue fever cases in Thailand using both statistical and data mining techniques. Major statistical techniques used in this research are linear regression and generalized linear model. The data mining algorithms used in our study are chi-squared automatic interaction detection (CHAID), classification and regression tree, artificial neural network, and support vector machine. The input data are from four sources, which are remotely sensed indices from the NOAA satellite to represent vegetation health and other related weather conditions, rainfall, the oceanic Nino index (ONI) for justifying climate variability affecting amount of rainfall, and historical dengue cases in Thailand to be used as the modeling target. In the modeling process, these data are lagged from 1 up to 24 months to observe time-series effect. On comparing performances of models built from different algorithms, we found that CHAID is the best one yielding the least error on estimating dengue cases. From the CHAID models to forecast dengue cases in Bangkok metropolitan and Nakhon Ratchasima in the northeast of Thailand, the high level of ONI is the most important factor. The large amount of rainfall is significant factor contributing to dengue outbreak in Chiang Mai in the north and Songkhla in the south.
机译:这项研究的重点是发展用于登革热暴发监视系统的计算数据驱动建模方法。暴发水平的预测是基于使用统计和数据挖掘技术对泰国登革热病例的估计。本研究中使用的主要统计技术是线性回归和广义线性模型。我们研究中使用的数据挖掘算法是卡方自动交互检测(CHAID),分类和回归树,人工神经网络和支持向量机。输入数据来自四个来源,它们是来自NOAA卫星的遥感指数,代表植被健康和其他相关天气状况,降雨,用于证明影响降雨量的气候变异性的海洋Nino指数(ONI)以及美国的历史登革热病例。泰国将用作建模目标。在建模过程中,这些数据会滞后1到24个月,以观察时间序列的影响。通过比较使用不同算法构建的模型的性能,我们发现CHAID是在估计登革热病例时产生最少误差的最佳模型。从CHAID模型到泰国东北部曼谷市和Nakhon Ratchasima的登革热病例预测,ONI的高水平是最重要的因素。大量降雨是造成北部清迈和南部宋卡爆发登革热的重要因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号