【24h】

BPSO Based Method for Screening of Alcoholism

机译:基于BPSO的酒精中毒筛查方法

获取原文

摘要

Selection of optimal channels for alcoholic detection is a major issue in recent year. Advance knowledge of brain region or EEG channels, most affected by alcohol, will reduce the computational complexity and new EEG recording device can be designed using selected channels. In this paper, we propose complexity and nonlinearity features and ensemble subspace K NN classifier to differentiate alcoholics and nonalcohol's from visually evoked potential (VEP). Binary particle swarm optimization (BPSO) is used to select optimum number of channels that minimize classification errors. A novel fitness function is designed to use in optimization technique. Fitness function evaluated using classification error and selected channels. Experimental results show that optimal channel selected have biological significance associated with alcoholic person. Thus, the outcome of the proposed channel selection methodology can be used for the accurate and rapid classification of normal and alcoholic subjects.
机译:酒精检测的最佳途径的选择是近年来的主要问题。对受酒精影响最大的大脑区域或EEG通道的高级知识将降低计算复杂性,并且可以使用选定的通道来设计新的EEG记录设备。在本文中,我们提出了复杂性和非线性特征以及集合子空间K NN分类器,以区分酒精饮料和非酒精饮料与视觉诱发电位(VEP)。二进制粒子群优化(BPSO)用于选择使分类错误最小化的最佳通道数。设计了一种新颖的适应度函数以用于优化技术。使用分类误差和所选渠道评估适应度函数。实验结果表明,所选择的最佳渠道具有与酗酒者相关的生物学意义。因此,所提出的频道选择方法的结果可以用于正常和酒精对象的准确和快速分类。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号