首页> 外文会议>International Conference on Bioinformatics and Systems Biology >License Plate Recognition: A Comparative Study on Thresholding, OCR and Machine Learning Approaches
【24h】

License Plate Recognition: A Comparative Study on Thresholding, OCR and Machine Learning Approaches

机译:车牌识别:阈值,OCR和机器学习方法的比较研究

获取原文

摘要

License Plate Recognition (LPR) aims to locate and extract vehicle plate information captures from images or videos. In this paper our objective is to bring forth a comparison based upon the considerations like average accuracy, precision and recall between algorithms according to threshold values, character recognition. The system thus formulated captures real-time input image. It identifies the license plate from extracted image. The work presented in this paper mainly focuses on classification and recognition of characters using Viola Jones Machine learning algorithm. LPR is the most interesting and challenging area of research due to its importance to a wide range of commercial applications, ranging from automated payment services (e.g. Parking and toll roads payment collection), traffic related applications such as road traffic monitoring, searching of stolen vehicles, airport gate monitoring, speed monitoring for more critical applications, to border crossing security and traffic surveillance systems.
机译:车牌识别(LPR)旨在从图像或视频中定位并提取捕获的车牌信息。在本文中,我们的目标是根据平均精度,精度和根据阈值,字符识别的算法之间的召回率等因素进行比较。这样制定的系统捕获实时输入图像。它从提取的图像中识别车牌。本文提出的工作主要集中在使用Viola Jones机器学习算法对字符进行分类和识别上。 LPR由于其在广泛的商业应用中的重要性而成为最有趣和最具挑战性的研究领域,从自动支付服务(例如停车和收费公路支付收集),与交通相关的应用(例如道路交通监控,搜索被盗车辆) ,机场登机口监控,更重要应用的速度监控,过境安全和交通监控系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号