首页> 外文会议>International Conference on Automatic Face and Gesture Recognition >Hand range of motion evaluation for Rheumatoid Arthritis patients
【24h】

Hand range of motion evaluation for Rheumatoid Arthritis patients

机译:类风湿关节炎患者手部活动范围评估

获取原文

摘要

We introduce a framework for dynamic evaluation of the fingers movements: flexion, extension, abduction and adduction. This framework estimates angle measurements from joints computed by a hand pose estimation algorithm using a depth sensor (Realsense SR300). Given depth maps as input, our framework uses Pose-REN [1], which is a state-of-art hand pose estimation method that estimates 3D hand joint positions using a deep convolutional neural network. The pose estimation algorithm runs in real-time, allowing users to visualise 3D skeleton tracking results at the same time as the depth images are acquired. Once 3D joint poses are obtained, our framework estimates a plane containing the wrist and MCP joints and measures flexion/extension and abduction/adduction angles by applying computational geometry operations with respect to this plane. We analysed flexion and abduction movement patterns using real data, extracting the movement trajectories. Our preliminary results show this method allows an automatic discrimination of hands with Rheumatoid Arthritis (RA) and healthy patients. The angle between joints can be used as an indicative of current movement capabilities and function. Although the measurements can be noisy and less accurate than those obtained statically through goniometry, the acquisition is much easier, non-invasive and patient-friendly, which shows the potential of our approach. The system can be used with and without orthosis. Our framework allows the acquisition of measurements with minimal intervention and significantly reduces the evaluation time.
机译:我们介绍了动态评估手指运动的框架:屈伸,伸展,外展和内收。该框架通过使用深度传感器(Realsense SR300)的手部姿势估计算法计算出的关节来估计角度测量值。给定深度图作为输入,我们的框架使用Pose-REN [1],这是最新的手部姿势估计方法,可使用深度卷积神经网络估计3D手部关节位置。姿势估计算法实时运行,允许用户在获取深度图像的同时可视化3D骨骼跟踪结果。获得3D关节姿势后,我们的框架将估算一个包含腕部和MCP关节的平面,并通过对该平面应用计算几何运算来测量其弯曲/伸展和外展/内收角度。我们使用真实数据分析了屈曲和绑架的运动模式,提取了运动轨迹。我们的初步结果表明,该方法可以自动识别类风湿关节炎(RA)和健康患者的手。关节之间的角度可以用作当前运动能力和功能的指示。尽管与通过测角法静态获得的测量结果相比,测量结果可能嘈杂且准确性不高,但采集起来更加轻松,无创且对患者友好,这表明了我们方法的潜力。该系统可以在有或没有矫形器的情况下使用。我们的框架允许以最少的干预获得测量值,并大大减少了评估时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号