首页> 外文会议>International Conference on Artificial Intelligence and Data Processing >Meta-sezgisel Algoritmaların Çok Boyutlu Problem Uzaylarındaki Arama Performanslarının Araştırılması
【24h】

Meta-sezgisel Algoritmaların Çok Boyutlu Problem Uzaylarındaki Arama Performanslarının Araştırılması

机译:多维问题空间中元启发式算法的搜索性能研究

获取原文

摘要

Depending on technological and scientific developments, industrial systems are becoming more powerful, effective and efficient. Parallel to these developments, the number of items that make up the systems increases and they have a much more complex structure. Increasing the number of design variables, which are the basic elements of systems, and modeling the complex relationships between these variables make it difficult to optimize the problems. In the past, heavily heuristic search algorithms have been used to optimize complex problems. However, in the past, constricted optimization problems with sizes from 10 to 30 have been characterized as multidimensional and complex, and today, problems with design variables ranging from 50 to 10,000 are evaluated in this category. However, there is currently insufficient information about the performance of heuristic search algorithms in multi-dimensional (over 50) search spaces. On the other hand, in the optimization of problems with high complexity and high number of design variables, the performance of algorithms in multi-dimensional search space is determinant. In this study, search performances are investigated in the optimization problems which have the most frequently used modern and traditional algorithms 50 and over design variables in the literature. The results obtained are unique to researchers studying in multi-dimensional search space.
机译:取决于技术和科学发展,工业系统正在变得越来越强大,有效和高效。与这些发展并行的是,组成系统的项目数量也在增加,并且它们的结构要复杂得多。设计变量的数量不断增加,而这些变量是系统的基本元素,并且对这些变量之间的复杂关系进行建模使得难以优化问题。过去,大量启发式搜索算法已用于优化复杂问题。但是,过去,大小从10到30的狭窄优化问题被描述为多维和复杂的,而如今,设计变量从50到10,000的问题已在此类别中进行评估。但是,目前没有足够的有关启发式搜索算法在多维(超过50个)搜索空间中的性能的信息。另一方面,在优化具有高复杂性和大量设计变量的问题时,多维搜索空间中算法的性能是决定因素。在这项研究中,研究了在最常见的现代和传统算法50以及文献中超过设计变量的优化问题中的搜索性能。对于在多维搜索空间中进行研究的研究人员而言,所获得的结果是独一无二的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号