首页> 外文会议>International Conference on Applied Machine Learning >Outlier Detection in Sensor Data Using Machine Learning Techniques for IoT Framework and Wireless Sensor Networks: A Brief Study
【24h】

Outlier Detection in Sensor Data Using Machine Learning Techniques for IoT Framework and Wireless Sensor Networks: A Brief Study

机译:使用针对IoT框架和无线传感器网络的机器学习技术对传感器数据进行异常检测:简要研究

获取原文

摘要

Outlier or anomaly detection in the sensed data for Internet of Things framework and Wireless Sensor Networks is a growing trend among researchers. Wireless Sensor Networks form the basis for Internet of Things framework in which the sensors sense a huge amount of data based on which certain actions or decisions or taken. So, the quality of data must be thoroughly checked as any kind of outlier may degrade the quality of the data and hence affect the final decision. Thus, it becomes imperative to maintain the quality of the data. In this work, some machine learning approaches have been discussed which have proved their mettle in outlier detection.
机译:在物联网框架和无线传感器网络的感测数据中异常或异常检测是研究人员中日益增长的趋势。无线传感器网络构成了物联网框架的基础,在该框架中,传感器根据某些动作或决定或采取的措施来感知大量数据。因此,必须彻底检查数据质量,因为任何异常值都可能降低数据质量,从而影响最终决策。因此,必须保持数据质量。在这项工作中,已经讨论了一些机器学习方法,这些方法证明了它们在异常检测中的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号