首页> 外文会议>International Conference on Applied Engineering >Optimization of Power Plant Operation Parameters for Efficiency Improvement through Data-Driven Relevance Vector Machine Regression Algorithm
【24h】

Optimization of Power Plant Operation Parameters for Efficiency Improvement through Data-Driven Relevance Vector Machine Regression Algorithm

机译:通过数据驱动的相关向量机回归算法优化电厂运行参数以提高效率

获取原文

摘要

In this paper, we will discuss about power generation efficiency improvement program (EIP) for saving fuel cost of electrical energy production. EIP will be focused on the embedding and enhancing operation culture by setting the operation parameters quality control chart as guidance for the power plant frontline operation. The data sources are limited to the controllable operation parameters acquired by Distributed Control System (DCS). New methodology that is algorithm as one of artificial intelligence tools will be proposed to be applied on the EIP. The new methodology consists of 5 steps: 1) collect operation parameter data acquisition, 2) select main operating indicator, 3) develop relevance vector machine (RVM) regression algorithm used for regression process, 4) define operation parameter quality control chart, 5) frontline operation optimization process. The operation parameter quality control chart is derived from statistical data acquired with the RVM regression algorithm. The mean regression curve achieved is proposed as a reference for maximum tolerable limit of operation parameter range and from the practical reference the efficient operation limit curve was set at 5% below it. The results show that RVM technique capable to produce an operation parameter regression curves from the sparse prior operation parameter data. This quality control chart can be applied as a helpful guidance for frontline operation in purpose for leading the change the operator behavior to become a new efficient mindset culture. Originality of the proposed methodology in this paper is the operation parameter quality control chart which derived by application of RVM regression algorithm.
机译:在本文中,我们将讨论有关发电效率改进计划(EIP),以节省电能生产的燃料成本。 EIP将通过设置操作参数质量控制图作为电厂一线操作的指南,着重于嵌入和增强操作文化。数据源仅限于由分布式控制系统(DCS)获取的可控制操作参数。将提出作为算法作为人工智能工具之一的新方法论,以将其应用于EIP。新方法包括5个步骤:1)收集运行参数数据采集; 2)选择主要运行指标; 3)开发用于回归过程的相关矢量机(RVM)回归算法; 4)定义运行参数质量控制图; 5)一线运营优化流程。操作参数质量控制图来自使用RVM回归算法获取的统计数据。建议将获得的平均回归曲线作为操作参数范围的最大容许极限的参考,并且根据实际参考,将有效操作极限曲线设置为低于该极限5%。结果表明,RVM技术能够根据稀疏的先前操作参数数据生成操作参数回归曲线。此质量控制图可以用作一线操作的有用指导,目的是引导操作员的行为转变为一种新型的有效心态文化。本文提出的方法的独创性是通过应用RVM回归算法得出的运行参数质量控制图。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号