首页> 外文会议>International Conference on Advanced Informatics: Concept Theory and Applications >Comparative Study of Topology and Feature Variants for Non-Task-Oriented Chatbot using Sequence to Sequence Learning
【24h】

Comparative Study of Topology and Feature Variants for Non-Task-Oriented Chatbot using Sequence to Sequence Learning

机译:面向序列学习的非任务型聊天机器人拓扑和特征变体的比较研究

获取原文

摘要

On language generation system such as chatbot and machine translation, there is a recent approach called sequence to sequence learning. This approach takes advantages of two recurrent neural networks (encoder and decoder) as an end-to-end mapping tool to generatively build the output from a certain input. In this paper, we try to find a combination of topology and feature which produces the highest result according to automatic evaluation metrics BLEU for non-task-oriented chatbot as the case study. The topologies used in the experiment are RNN, GRU, and LSTM along with their modifications, which are bidirectional encoder and attention-based decoder. The features used in the experiment are word-based feature and character-based feature. The experiment is conducted using Papaya English dialogue dataset. From the dataset, ten thousand pairs of conversation are picked for training data and a thousand pairs of conversation are picked for testing data. The result shows that bidirectional LSTM encoder with attention-based decoder and word based feature produced the highest cumulative BLEU-4 score amongst other topologies, which is 0.31.
机译:在诸如聊天机器人和机器翻译之类的语言生成系统上,最近有一种称为序列学习的方法。这种方法利用了两个循环神经网络(编码器和解码器)作为端到端映射工具的优势,可以从特定输入生成输出。在本文中,我们尝试以针对非任务型聊天机器人的自动评估指标BLEU为基础,找到能够产生最高结果的拓扑和功能的组合。实验中使用的拓扑是RNN,GRU和LSTM及其修改,它们是双向编码器和基于注意的解码器。实验中使用的功能是基于单词的功能和基于字符的功能。该实验是使用木瓜英语对话数据集进行的。从数据集中,选择一万对会话以获取训练数据,并选择一千对会话以获取测试数据。结果表明,具有基于注意力的解码器和基于单词的功能的双向LSTM编码器在其他拓扑中产生的累积BLEU-4得分最高,为0.31。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号