首页> 外文会议>International Conference on Advanced Computer Science and information Systems >Modeling and Predicting Protein-Protein Interactions of Type 2 Diabetes Mellitus Using Feedforward Neural Networks
【24h】

Modeling and Predicting Protein-Protein Interactions of Type 2 Diabetes Mellitus Using Feedforward Neural Networks

机译:使用前馈神经网络建模和预测2型糖尿病的蛋白质-蛋白质相互作用

获取原文

摘要

Data of protein-protein interactions (PPIs) are still limited. More data of PPIs are required so one can find significant proteins representing a disease more accurately. Computational approach which can predict PPIs is one of alternatives to reduce time and cost that generally required by experimental work. This research focused on predicting PPIs of Type 2 Diabetes mellitus using feedforward neural network (FNN). Impact of different activation functions, number of units per hidden layers and number of hidden layers themselves to estimation error were observed. Rectifier activation function, seven hidden layers and 36 units per hidden layers gave smallest MSE separately. The model with those configurations predicted a PPI with predicted combined score of 0.922. FNN model had better prediction accuracy than random forest and support vector regression models.
机译:蛋白质间相互作用(PPI)的数据仍然有限。需要更多的PPI数据,以便人们可以更准确地找到代表疾病的重要蛋白质。可以预测PPI的计算方法是减少实验工作通常需要的时间和成本的替代方法之一。这项研究的重点是使用前馈神经网络(FNN)预测2型糖尿病的PPI。观察到了不同的激活函数,每个隐藏层的单位数量以及隐藏层本身的数量对估计误差的影响。整流器激活功能,七个隐藏层和每个隐藏层36个单元分别提供了最小的MSE。具有这些配置的模型预测的PPI为0.922。与随机森林和支持向量回归模型相比,FNN模型具有更好的预测准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号