首页> 外文会议>Interferometry XIII: Techniques and Analysis >A critical look at the source characteristics used for time varying fringe interferometry
【24h】

A critical look at the source characteristics used for time varying fringe interferometry

机译:审视用于时变条纹干涉测量的光源特性

获取原文
获取原文并翻译 | 示例

摘要

Interference fringes are registered by detectors. All detectors absorb energy from a single or multiple superposed fields through the process of "square modulus" of the sum of the complex amplitudes. The detected energy becomes proportional to the total relative phase difference for all the superposed fields. The process creates ambiguity in discerning the effects due to frequency and phase modulations. We underscore that fringe detection being a physical interaction process between superposed fields and detecting molecules (including beam splitter boundary), the dipolar properties of atoms and molecules should be used to help us discern the effects due to frequency and phase modulations. We traditionally accept that orthogonally polarized light beams do not "interfere". Or, light beams of different frequencies are "incoherent" to each other; but we have highly developed heterodyne interferometry for which the wave fronts of the superposed beams must be matched. Yet, we do not explicitly recognize the roles of the molecules of detectors and beam splitters that really carry out the real functions. Besides, understanding the various processes behind their dipolar response can help us innovate more precision interferometric techniques. As for examples: (ⅰ) How precisely the polarization should be parallel to produce perfect visibility fringes? (ⅱ) How precisely equal the optical frequencies of superposed beams should be to create perfectly steady-state energy redirection by a beam splitter in an interferometer with collimated and collinear beams. (ⅲ) How small the wave front mis-match can be tolerated to produce perfect heterodyne fringes while superposing beams of different frequencies?
机译:干涉条纹由检测器记录。所有探测器通过复振幅总和的“平方模”过程从单个或多个叠加场吸收能量。对于所有叠加场,检测到的能量与总的相对相位差成比例。该过程在辨别由于频率和相位调制引起的影响时会产生歧义。我们强调,边缘检测是叠加场与检测分子(包括分束器边界)之间的物理相互作用过程,应使用原子和分子的偶极特性来帮助我们识别由于频率和相位调制引起的影响。传统上,我们接受正交偏振光束不“干扰”。或者,不同频率的光束彼此“不相干”。但是我们已经发展了外差式干涉测量法,必须对叠加光束的波阵面进行匹配。但是,我们没有明确认识到真正执行实际功能的检测器和分束器分子的作用。此外,了解其偶极响应背后的各种过程可以帮助我们创新更精确的干涉技术。例如:(ⅰ)极化应如何精确地平行以产生完美的可见条纹? (ⅱ)通过准直光束和共线光束的干涉仪中的分束器,应如何精确地等于叠加光束的光频率,以创建完美的稳态能量重定向。 (ⅲ)在叠加不同频率的光束时,可以容忍多小的波前失配以产生完美的外差条纹?

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号