首页> 外文会议>Conference on Interferometry >A critical look at the source characteristics used for time varying fringe interferometry
【24h】

A critical look at the source characteristics used for time varying fringe interferometry

机译:临界外观用于时变形干涉测量的源特性

获取原文

摘要

Interference fringes are registered by detectors. All detectors absorb energy from a single or multiple superposed fields through the process of "square modulus" of the sum of the complex amplitudes. The detected energy becomes proportional to the total relative phase difference for all the superposed fields. The process creates ambiguity in discerning the effects due to frequency and phase modulations. We underscore that fringe detection being a physical interaction process between superposed fields and detecting molecules (including beam splitter boundary), the dipolar properties of atoms and molecules should be used to help us discern the effects due to frequency and phase modulations. We traditionally accept that orthogonally polarized light beams do not "interfere". Or, light beams of different frequencies are "incoherent" to each other; but we have highly developed heterodyne interferometry for which the wave fronts of the superposed beams must be matched. Yet, we do not explicitly recognize the roles of the molecules of detectors and beam splitters that really carry out the real functions. Besides, understanding the various processes behind their dipolar response can help us innovate more precision interferometric techniques. As for examples: (ⅰ) How precisely the polarization should be parallel to produce perfect visibility fringes? (ⅱ) How precisely equal the optical frequencies of superposed beams should be to create perfectly steady-state energy redirection by a beam splitter in an interferometer with collimated and collinear beams. (ⅲ) How small the wave front mis-match can be tolerated to produce perfect heterodyne fringes while superposing beams of different frequencies?
机译:干涉条纹被探测器注册。所有探测器通过复合幅度的总和的“方形模量”的过程从单个或多个叠加的场吸收能量。检测到的能量与所有叠置场的总相对相位差变成成比例。该过程在识别由于频率和相位调制引起的效果方面创造了模糊性。我们强调的是,边缘检测是叠加的领域和检测分子(包括分束器边界)之间的物理相互作用过程,原子和分子的偶极性质应该用于帮助我们辨认由于频率和相位调制引起的效果。我们传统上接受正交偏振光束不会“干扰”。或者,不同频率的光束彼此“不连贯”;但是,我们具有高度开发的外差干涉测量法,必须匹配叠加梁的波前沿。然而,我们没有明确地认识到探测器分子和分束器的角色,这些角色和分支分离器真正执行真实功能。此外,了解他们的双极反应背后的各种过程可以帮助我们创新更精确的干涉技术。至于示例:(Ⅰ)极化应该是平行的,以产生完美的可见度条纹? (Ⅱ)多等于叠加光束的光学频率应该是通过准直和共线束的干涉仪中的分束器产生完全稳态的能量重定向。 (Ⅲ)可以容忍波前误差匹配的小,以产生完美的外差条纹,同时不同频率的叠加梁?

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号