首页> 外文会议>Interactive theorem proving >A Formal Proof of a Necessary and Sufficient Condition for Deadlock-Free Adaptive Networks
【24h】

A Formal Proof of a Necessary and Sufficient Condition for Deadlock-Free Adaptive Networks

机译:无死锁的自适应网络的充要条件的形式证明

获取原文
获取原文并翻译 | 示例

摘要

Deadlocks occur in interconnection networks as messages compete for free channels or empty buffers. Deadlocks are often associated with a circular wait between processes and resources. In the context of networks, Duato proved that for adaptive routing networks a cyclic dependency is not sufficient to create a deadlock. He proposed deadlock-free routing techniques allowing cyclic dependencies between channels or buffers. His work was a breakthrough. It was also counterintuitive and only a complex mathematical proof could convince his peers about the soundness of his theory. We define a necessary and sufficient condition that captures Duato's intuition but that is more intuitive and leads to a simpler proof. However, our condition is logically equivalent to Duato's one. We used the ACL2 theorem proving system to formalize our condition and its proof. In particular, we used two features of ACL2, namely the encapsulation principle and quantifiers, to perform an elegant for-malization based on second order functions.
机译:当消息争用空闲通道或空缓冲区时,互连网络中会发生死锁。死锁通常与进程和资源之间的循环等待相关。在网络环境中,Duato证明了对于自适应路由网络而言,循环依赖性不足以产生死锁。他提出了无死锁的路由技术,允许通道或缓冲区之间的循环依赖。他的工作是一项突破。这也是违反直觉的,只有复杂的数学证明才能使他的同僚相信他的理论的正确性。我们定义了一个满足Duato直觉的必要和充分条件,但它更直观,并导致更简单的证明。但是,从逻辑上讲,我们的条件等同于杜亚托的条件。我们使用ACL2定理证明系统来形式化我们的条件及其证明。特别地,我们使用了ACL2的两个功能,即封装原理和量词,以基于二阶函数进行优雅的形式化。

著录项

  • 来源
    《Interactive theorem proving》|2010年|p.67-82|共16页
  • 会议地点 Edinburgh(GB);Edinburgh(GB);Edinburgh(GB);Edinburgh(GB)
  • 作者

    Preek Verbeek; Julien Schmaltz;

  • 作者单位

    Radboud University Nijmegen Institute for Computing and Information Sciences P.O. Box 9010 6500GL Nijmegen, The Netherlands,Open University of the Netherlands School of Computer Science P.O. Box 6401DL Heerlen, The Netherlands;

    Radboud University Nijmegen Institute for Computing and Information Sciences P.O. Box 9010 6500GL Nijmegen, The Netherlands,Open University of the Netherlands School of Computer Science P.O. Box 6401DL Heerlen, The Netherlands;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 计算技术、计算机技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号