首页> 外文会议>Intelligent Systems, Modelling and Simulation (ISMS), 2012 Third International Conference on >Hidden Markov Model-Based Gesture Recognition with Overlapping Hand-Head/Hand-Hand Estimated Using Kalman Filter
【24h】

Hidden Markov Model-Based Gesture Recognition with Overlapping Hand-Head/Hand-Hand Estimated Using Kalman Filter

机译:基于卡尔曼滤波估计的手/手重叠的基于隐马尔可夫模型的手势识别

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we introduce a hand gesture recognition system to recognize isolated Malaysian Sign Language (MSL). The system consists of four modules: collection of input images, feature extraction, Hidden Markov Model (HMM) training, and gesture recognition. First, we apply skin segmentation procedure throughout the input frames in order to detect only skin region. Then, we proceed to feature extraction process consisting of centroids, hand distance and hand orientation collecting. Kalman Filter is used to identify the overlapping hand-head or hand-hand region. After having extracted the feature vector, the hand gesture trajectory is represented by gesture path in order to reduce system complexity. We apply Hidden Markov Model (HMM) to recognize the input gesture. The gesture to be recognized is separately scored against different states of HMMs. The model with the highest score indicates the corresponding gesture. In the experiments, we have tested our system to recognize 112 MSL, and the recognition rate is about 83%.
机译:在本文中,我们介绍了一种手势识别系统来识别孤立的马来西亚手语(MSL)。该系统由四个模块组成:输入图像的收集,特征提取,隐马尔可夫模型(HMM)训练和手势识别。首先,我们在整个输入帧中应用皮肤分割程序,以便仅检测皮肤区域。然后,我们进行特征提取过程,包括质心,手距和手方位收集。卡尔曼滤波器用于识别重叠的手部或手部区域。在提取特征向量之后,手势轨迹由手势路径表示,以降低系统复杂度。我们应用隐马尔可夫模型(HMM)识别输入手势。相对于HMM的不同状态分别对要识别的手势进行评分。得分最高的模型表示相应的手势。在实验中,我们对系统进行了测试以识别112 MSL,识别率约为83%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号