首页> 外文会议>Intelligent Systems Design and Applications, 2009. ISDA '09 >E-tsRBF: Preliminary Results on the Simultaneous Determination of Time-Lags and Parameters of Radial Basis Function Neural Networks for Time Series Forecasting
【24h】

E-tsRBF: Preliminary Results on the Simultaneous Determination of Time-Lags and Parameters of Radial Basis Function Neural Networks for Time Series Forecasting

机译:E-tsRBF:同时确定径向基函数神经网络的时滞和参数的初步结果,用于时间序列预测

获取原文

摘要

Radial basis function neural networks have been successfully applied to time series prediction in literature. Frequently, methods to build and train these networks must be given the past periods or lags to be used in order to create patterns and forecast any time series. This paper introduces E-tsRBF, a meta-evolutionary algorithm that evolves both the neural networks and the set of lags needed to forecast time series at the same time. Up to twenty-one time series are evaluated in this work, showing the behavior of the new method.
机译:径向基函数神经网络已成功地应用于文献中的时间序列预测。通常,必须给定用于构建和训练这些网络的方法的过去时间段或滞后时间,以便创建模式并预测任何时间序列。本文介绍了E-tsRBF,这是一种元进化算法,可同时进化神经网络和同时预测时间序列所需的一组滞后。这项工作最多评估了21个时间序列,显示了新方法的行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号