首页> 外文会议>Intelligent robots and computer vision XXVIII: algorithms and techniques >Real-time People and Vehicle Detection from UAV Imagery
【24h】

Real-time People and Vehicle Detection from UAV Imagery

机译:无人机影像实时人员和车辆检测

获取原文
获取原文并翻译 | 示例

摘要

A generic and robust approach for the real-time detection of people and vehicles from an Unmanned Aerial Vehicle (UAV) is an important goal within the framework of fully autonomous UAV deployment for aerial reconnaissance and surveillance. Here we present an approach for the automatic detection of vehicles based on using multiple trained cascaded Haar classifiers with secondary confirmation in thermal imagery. Additionally we present a related approach for people detection in thermal imagery based on a similar cascaded classification technique combining additional multivariate Gaussian shape matching. The results presented show the successful detection of vehicle and people under varying conditions in both isolated rural and cluttered urban environments with minimal false positive detection. Performance of the detector is optimized to reduce the overall false positive rate by aiming at the detection of each object of interest (vehicle/person) at least once in the environment (i.e. per search patter flight path) rather than every object in each image frame. Currently the detection rate for people is -70% and cars -80% although the overall episodic object detection rate for each flight pattern exceeds 90%.
机译:在用于空中侦察和监视的全自动无人机部署框架内,一种通用且鲁棒的方法可以从无人驾驶飞机(UAV)实时检测人员和车辆,这是一个重要目标。在这里,我们提出一种基于自动成像的车辆自动检测方法,该方法基于多个训练有级联的Haar分类器,并在热成像中进行了二次确认。此外,我们基于类似的级联分类技术,结合了附加的多变量高斯形状匹配,提出了一种在热图像中进行人员检测的相关方法。呈现的结果表明,在偏僻的农村和混乱的城市环境中,在各种条件下成功检测到车辆和人员的情况,误报检测率极低。通过针对环境中的每个感兴趣的对象(车辆/人)至少检测一次(即每个搜索模式飞行路径)而不是每个图像帧中的每个对象,来优化检测器的性能以降低总体误报率。当前,尽管每个飞行模式的总体情节物体检测率超过90%,但人的检测率为-70%,汽车的检测率为-80%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号